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We introduce equations describing the invariant curves associated with periodic 
points in a wide class of two-dimensional invertible maps, which in the special 
case of the map T(x, z) = (1 - a[xl + bz, x) can be solved by analytical meth- 
ods. In the dissipative case several branches of the separatrices of the fixed 
points, as well as, of the period-2 and -4 points, are constructed. The regions of 
the parameter space where a given type of strange attractor exists are located. 
We point out that the disappearance of homoclinic intersections between the 
separatrices of the fixed point and that of heteroclinic intersections between the 
unstable manifolds of the period-2 points and the stable manifold of the fixed 
point may occur separately, 'and the latter leads already to the appearance of a 
two-piece strange attractor. This phenomenon may happen at weak dissipation 
in other maps, too. In the conservative case b = 1 separatrices and certain 
invariant tori are calculated. 

KEY WORDS: Two-dimensional map; invariant curves; homoclinic and 
heteroclinic points; evolution of strange attractors; phase diagram; invari- 
ant tori. 
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to the nonlinearity of these maps, however, the investigations are, at least 
partially, restricted to numerical or perturbative methods. (~'2~ 

It has been recognized only quite recently that for maps characterized 
by piecewise linear functions the construction of explicit solutions is possi- 
ble. One such example is the Kaplan-Yorke map (3) where analytic results 
have been obtained for some correlation functions (4) and for the invariant 
measure. (s~ The calculations have been extended to a stochastic version of 
the model (6'7) as well. Another example, we consider in detail in this paper 
is the two-dimensional invertible map introduced by Lozi. (8~ It belongs to a 
broader family of maps, including the famous H6non model, (9'~~ the 
members of which are expected, at least, in the chaotic region, to exhibit 
certain topological similarities. It is the piecewise linear map, however, 
which possesses the simplest strange attractor being the product of pieces of 
straight lines by a Cantor set. (8~ Owing to this simplicity again explicit 
calculations are possible, and the qualitative picture emerging from this 
model may have some relevance to other members of the family, too. As 
for the mathematical properties of the particular map, Misiurewicz (11) has 
proven the existence of a strange attractor in a given range of parameters 
(and the topological mixing along it). In two previous papers (12'13~ we 
presented a method for solving the equations for the invariant curves 
associated with the fixed points and period-2 points and explicitly con- 
structed several branches of the stable and unstable manifolds. A three- 
dimensional piecewise linear map has been investigated in Ref. 14. 

Stable and unstable manifolds (separatrices) play an essential role in 
dynamical systems as chaotic behavior is related in both dissipative and 
Hamiltonian cases to the emergence of homoclinic points, i.e., of intersec- 
tion points between the stable and unstable manifolds of the same hyper- 
bolic point. (~) Strange attractors of dissipative chaotic systems are asso- 
ciated with the unstable manifolds of hyperbolic points. As the unstable 
manifolds of periodic points are expected to run "parallel" to that of a 
fixed point, one-piece strange attractors appear to be the closure of the 
unstable manifold of hyperbolic fixed points. (15-as'2) On the other hand, the 
existence of heteroclinic points, i.e., ~ntersection points with the stable 
manifold of another fixed point, destroys the attractor. Thus, one may 
conclude that if the unstable manifold of a fixed point is bounded and 
possesses no heteroclinic points, then its closure is a one-piece strange 
attractor as long as homoclinic points are present. The investigations, 
however, supporting this rule come from systems with relatively strong 
dissipation. Through the example of the piecewise linear map we shall show 
that the above condition is not sufficient. In the case of relatively weak 
dissipation it may happen that the unstable manifolds of period-2 points 
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are not crossed by the stable manifold of the fixed point, although the latter 
still possesses homoclinic points, and then the strange attractor is the 
closure of the unstable manifolds of the period-2 points (a two-piece 
object). In other words, by changing a control parameter of the system one 
generally reaches a point beyond which no heteroclinic intersections exist 
between the unstable manifolds of the period-2 points and the stable one of 
the fixed point and, in the case of strong dissipation, homoclinic intersec- 
tions along the separatrices of the fixed point cease at the same value. (15) 
We illustrate in the following that the two events may occur separately. 
This can lead to the peculiar phenomenon that at a fixed dissipation 
strength a two-piece strange attractor may exist even if a one-piece strange 
attractor cannot be present. 

The explicit construction for the piecewise linear model makes it 
possible to establish a phase diagram, i.e., to specify in which region of the 
parameter space the different attractors exist. In the case of extremely 
strong dissipation (one-dimensional case) the strange attractor possesses a 
sequence of bifurcations into 2 n bands when lowering the control parame- 
ter. Our results indicate that this property does not remain valid, at least in 
the piecewise linear map, for cases with less strong dissipation. 

Furthermore, in the Hamiltonian (or conservative) limit we construct 
several branches of the separatrices of fixed points, show that they have 
homoclinic intersections, and for closed invariant curves of period-2 points 
we prove they are ellipses. 

The paper is organized as follows. In Section 2 we introduce equations 
describing the invariant curves associated with periodic points in a broad 
class of two-dimensional invertible maps. In the conservative limit some 
general symmetry relations are found. Then, we turn to the piecewise linear 
map and after determining some of its periodic points and their stability 
region (Section 3), we discuss the method for solving the equations of 
invariant curves in Section 4. The structure of the strange attractor at the 
standard values of parameters is investigated. We illustrate that the unsta- 
ble manifolds of the periodic points are indeed parallel to that of one of the 
fixed points, and that they possess homoclinic intersections. The modifica- 
tion of the strange attractor by varying a control parameter is examined in 
Section 5. The critical situations where heteroclinic points appear between 
the invariant curves of the fixed points and when homoclinic points cease 
to exist along the separatrices of the fixed point, as well as of period-2 and 
-4 points, is considered. Next, we discuss the structural instability of the 
unstable manifolds of the period-2 points and show that in the region 
characterized by a more compact form it may happen that these manifolds 
have no heteroclinic intersections with that of the fixed point in spite of the 
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fact that homoclinic points still exist between the separatrices of the fixed 
point. Section 7 is devoted to the conservative limit. 

2. EQUATIONS FOR THE INVARIANT CURVES IN A CLASS OF 
TWO-DIMENSIONAL MAPS 

We consider the class of mappings of the plane into itself defined by 
the transformation 

where f denotes a single-humped symmetric function. The Jacobian of the 
map is constant, - b .  The case of Ibl < 1 corresponds to the dynamics of a 
dissipative system, and that of Ib l - -1  to a conservative (Hamiltonian) 
system. In the limit b ~ 0 the map becomes one dimensional. The transfor- 
mation is invertible for b e a 0, and after a change of variables x ~ - z it has 
the same form as (2.1), i.e., 

(:): + 
with 

1 /~= _1 (2.3) 
f ( x )  = ~ f ( x ) ,  b 

For 

f ( x )  = 1 - a x  2 (2.4) 

we recover the H6non model discussed extensively in the literature. (15'18-25) 
The particular example we shall treat is 

f ( x )  = 1 - a l x  I (2.5) 

which corresponds to the piecewise linear map introduced by Lozi. (s) As we 
shall see, inside the chaotic region the two maps exhibit qualitative similari- 
ties in the topological structure of their invariant curves. 

The equations for the invariant manifolds follow immediately from 
(2.1). Let us consider the set of invariant curves of the n-cycle points G~ 
with sequence G 1 ~ G 2 ~ �9 �9 �9 ~ G n ~ G I . It  is natural to assume that this 
object is described by n continuous, generally multivalued, functions 
ffl . . . .  ,ft, such that the curve x = i f ( z )  belongs to G i. Applying (2.1) to 
the points of this manifold, we obtain new points with eoordinates x '  
= f ( x )  + b f f - l ( x )  and z ' =  x, where i f / -  1 denotes the inverse of i f ,  gener- 
ally multivalued too. As, however, the image must lie on the invariant curve 



Invariant Curves, Attractors, and Phase Diagrams 199 

around Gi+ 1, x '  = ffi+ 1(z') holds and we find the set of equations 

ffii+ , ( z )  = f ( z )  + bffi i - ' ( z ) ,  i = 1 . . . . .  n (2.6) 

specifying the functions f t .  Here the independent variable is denoted again 
by z, and, of course, ff~+ 1 = ffl is understood. Similar equations follow from 
the inverted map (2.2). Taking into consideration that the order of sequence 
of the n cycle is now opposite, one obtains 

F/(Z) =i(Z) ~ bffT.+ll(z), i = 1 . . . . .  n (2.7) 

The curve x = iT*/(z) represents an invariant manifold associated with ~ ,  
where Gi denotes the same point in T as does G i in T. 

For dissipative maps Eq. (2.6) with n - - 1  has been used first by 
Bridges and Rowlands (26) to obtain an approximate expression for the 
H6non attractor. For describing other invariant manifolds of fixed points it 
has been applied in Refs. 18 and 12. The case of period-2 points has been 
discussed recently. (13) For Hamiltonian systems, however, Eq. (2.6) with 
n = 1 was used already more than 12 years ago by McMillan (27) to 
calculate invariant curves around elliptic fixed points (in fact, he consid- 
ered the limit b = - 1). 

Equations (2.6) and (2.7) have the same content; therefore simplicity 
and directness govern which of the two is to be solved. We shall discuss a 
method which is self-generating when applied to the unstable manifolds 
described by (2.6), but not for the stable ones. The advantage of Eq. (2.7) 
lies in the fact that in the inverted map the stable manifolds become 
unstable and thus the same method if performed in representation (2.7) 
generates the branches of the stable manifolds of the original mapJ ~2) 
Formally, by knowing any of the solutions ff/(z) of (2.6), 

~ (z )  = - f f - ' ( -  z)  (2.8) 

will be a solution of (2.7). 
This relation leads to important consequences for Hamiltonian sys- 

tems. We investigate here the limit b = 1 only; however, for b = - 1  see 
Ref. 27. Let us consider first the ease of the invariant manifolds of 
hyperbolic fixed points. If ff+u belongs to the unstable manifold of the fixed 
point H+,  lying in the first quadrant, the corresponding aT*+ should describe 
the stable manifold of the other fixed point H_  (in the third quadrant) as 
the form of the transformations T and T are now the same and H+ is just 
H and vice versa. Thus 

f*J(z )  = - f f+u -~ ( - z )  (2.9) 

and similarly for the other two separatrices. This means that the stable 
(unstable) manifold of one of the fixed points and the unstable (stable) 
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manifold of the other one are of the same form in conservative systems 
belonging to the class (2.1) with b = 1. Applying now (2.8) to a case when 
the period-2 points F1, F 2 are elliptic and, as typical, they lie in the second 
and fourth quadrant, we find 

~(2)(z ) = _~(~)1( _ z) (2.10) 

since Fl(2)= F1(2) and T and i~ coincide. Equation (2.10) expresses a 
symmetry property of the invariant curves of elliptic period-2 points in 
systems with b = 1. 

Let us finally consider the periodic points Gl . . . . .  Gn themselves. As a 
consequence of the second equation of (2.1) their coordinates should be 
written in the form (X} n),''(n)'l'~,, .','.~2r"(n),~l'(n)'~J,..., (x(,, "), X(,,n__)l). The set of 
these points is invariant; therefore, it follows from the argument above that 
the unknown coordinates are solutions of the set 

x}:)l =f(x/(")) + bx(i2)l , i =  1 . . . . .  n (2.11) 

"(") = x~ "), x(0 ") = x~(")). By means of these equations one can specify ~ n +  1 

with relative ease periodic points of higher order. 

3. PERIODIC POINTS AND THEIR STABILITY IN THE PIECEWlSE 
LINEAR MAP 

We turn now to the particular model defined by (2.5) and focus our 
attention on the most interesting part of the parameter space specified by 
l < a ~ 2  and 0~< b~< 1. First, we discuss periodic points which are 
relevant in later sections. 

In the region defined above two fixed points exist: 

1 
+ 1 - b + a  ' - - 1 -  - a  

From the derivative matrix of the map we find the eigenvalues at H+ to be 

X+ = - [ a  + (a 2 + 4 b ) ' / 2 1 / 2  (3.2) 

;k+ = - [ a - ( a  2 + 4 b ) ' / 2 ] / 2  (3.3) 

IX+l > 1 and IX+[ < 1 for a > 1 - b, consequently in the whole region of 
interest. At H we obtain 

h"_ = - X ~  , X'_ = - X +  (3 .4)  

as eigenvalues. Thus both fixed points are hyperbolic. 
The coordinates of the period-2 points differing from H+ and H_ 

follow easily from (2.11) to be 

x} z) = (1 - b + a ) / N  2, x(2 2) = (1 - b -  a ) / N  2 (3.5) 
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where 

N 2 = (1 - 6)2+ a z (3.6) 

The corresponding eigenvalues are 

a ~  ) = b - a 2 / 2  u a ( a  2 - 4 b ) 1 / 2 / 2  (3.7) 

They are less than 1 in modulus if 

a < a (2) ---- 1 + b (3.8) 

i.e., the 2-cycle is stable in this region, otherwise unstable (with hyperbolic 
points). Entering the domain 

a < ~7 (2) = 2~/~ (3.9) 

the stable nodes become stable spirals. 
Among the four-cycles a central role is played by the one for which 

x(2 4) < 0 and the other coordinates are positive. From (2.11) we obtain 

X~ 4) = [(1 - b2)(1 + b - a)  + a2(1 + b + a ) l / N  a 

x2 (4) ~--~ [(1 -1- b) 2 q- a2](1- b -  a ) / N  4 

x(3 4) = [ ( 1  - b2)(1 --b b "[- a ) -  a2(1 + b -  a ) ] / N  4 

X ( 4 )  = [1 - (a  + b)2](1 + b - a ) / N  4 

(3.10) 

with 

U 4 = (1 - b2)2-1 - a 4 (3.11) 

As x(4 4) must be nonnegative, this 4-cycle is defined only for a/> 1 + b. The 
eigenvalues are given by 

~(+4) = b 2 _ a 4 / 2  -T- a2(a 4 - 4b2)1 /2 /2  (3.12) 

12~(+4) 1 > 1, 1~(_ 4) [ < 1 in the region of existence, the cycle is unstable. 
The 6-cycle with x (6), x (6) < 0 (otherwise positive) will be important in 2 4 

our argument. We give the coordinates of that point only which lies above 
the diagonal in the first quadrant: 

x~ 6)= { l + b - a + a 2 b 2 ( 1 - b - a ) + ( a  2 + b 2 ) ( 1 - b + a )  

+ [ 2 a b ( a  + b 2) - a 4 -  b4](1 + b + a ) } / N  6 (3.13) 

X (6) = ( (1  -[- b 2 ) I 1  -- ( a  q.- b )2 ] (1  -[- b - a )  

+ (a 4 -- 4a2b + b2)(1 - b - a ) } / N  6 (3.14) 
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with 

N 6 = (1 - b3)2+ aZ(a a + b)(3b - a 2) 

This cycle is unstable, too. 

(3.15) 

4. CONSTRUCTION OF STABLE AND UNSTABLE MANIFOLDS. 
THE STRUCTURE OF THE STRANGE ATTRACTOR AT 
STANDARD PARAMETER VALUES 

The common idea in calculating the invariant manifolds associated 
with period-n points of the piecewise linear map is to assume that the curve 
is a straight line in a finite (not only infinitesimal) neighborhood of the 
point in question. This assumption works since the map acts linearly in a 
whole half-plane. First, one specifies straight lines going through the 
periodic point G i by writing 

f f : x  = x} n) + X/(n)(z - x(i~_),), i = 1 . . . . .  n (4.1) 

where x} n) denote the coordinates given by (2.11). After substituting these 
forms into (2.6) the slopes can be determined. Assuming the straight lines 
are defined in the half-plane of the corresponding periodic point, the 
precise range of validity of the branches follows from (2.6). Moreover, for 
the unstable manifolds the same equation generates further pieces of 
straight line segments of the separatrices. 

To be more precise, let us start with the unstable manifold W" of the + 

fixed point H+ .(12) We set x* as x} l) in Eq. (4.1) (now n = 1). It follows 
then from (2.6) that X} 1) takes the value X~ of (3.2). The property that the 
slope of the straight line is just the eigenvalue of the transformation is a 
consequence of having the eigenvector in the form of (X~_, 1) due to the 
second equation of (2.1). Because the straight line is defined in the region 
z > 0, f~_ has a maximum value 

c *  - -  (1  - )t u + ) x *  ( 4 . 2 )  

Consequently, the inverse ranges up to z = c~. only, which according to 
(2.6) restricts the region of validity of (4.1). Thus, (4.1) describes a branch 
of W" between the points P0 : ( c* ,0 )  and P l : (1  - a c * , c * ) ,  where Pl is + 

just the image of Po. Since [ +1 > 1, the inverse of this branch is defined 
along a longer interval as the branch itself. This fact makes it possible to 
construct a new branch in the region 1 - a c *  < z < O. Following (2.6), we 
have to add the inverse of (4.1) multiplied by b to 1 + az ,  which results in 

x = c* + ( 2 a  + X+)z (4.3) 
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Fig. 1. 
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(a) The first branches of the unstable manifold W~_; (b) The first branches of the 
unstable manifolds associated with the period-2 points F I , F 2. 

The range of (4.3) is limited by P2, the second iterate of P0, and P0 itself 
(Fig. la). The inverse of the two-branch object contains a new branch as 
compared to the previous step, namely, that corresponding to P2Po . This 
branch then, through (2.6), specifies a new one (Fig. la). As, however, the 
inverse of this object contains again new branches, we have to reiterate the 
procedure which can be most easily performed by means of a graphical 
construction. 

A similar self-generating procedure works for the unstable manifold 
W ~ _ of the other fixed point, H ,  too. The only modification is that the 
first branch going through H_  is not bounded from the left. All the further 
branches are already confined into those of W+. 

As for the stable separatrices, it follows from (4.1) that the straight 
lines with X} 0 = X~ ((3.3), (3.4)) cross the z axis at 

d* = x*  (1 - 1 / ~ )  (4.4) 

In the inverted map (2.2) the lines have slopes greater than 1 in modulus, 
thus we find a similar situation in T as in T above. From (2.7) one obtains 
for the first two branches of W~ 

s x - x_+ ( z  - a*_+ ) ( 4 . 5 )  

z - d* 
x = 1 / ~  u  (4.6) 

The end points of these objects and further parts of the stable manifolds are 
to be constructed in an analogous way to that used for W u. 
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Fig. 2. A t  the s t anda rd  values  a = 1.7, b = 0.5. (a) I n v a r i a n t  man i fo lds  of H +  as ob t a ined  

af ter  five steps of cons t ruc t ion;  (b) i nva r i an t  man i fo lds  of F 1 , F 2 as o b t a i n e d  af ter  two steps; 
(e) i nva r i an t  man i fo lds  of the per iod-4 poin ts  G I . . . . .  G4 as ob t a ined  af ter  one step; (d) the 
s t range a t t rac to r  in a numer ica l  s imula t ion  af ter  3000 points .  
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Turning now to the period-2 points, one finds from (2.6) that the 
slopes )t~22 ) of (4.1) have to take one of the values 

Xu,.2 = - + [ a + (a 2 - 4 b ) ' / 2 ] / 2  (4.7a) 

Xs,,2 = - + [a - ( a  2 -  4b) ' /21 /2  (4.7b) 

where the plus sign corresponds to the periodic point F 1 : (x{ 2), x(22)). In the 
h" unstable region a > 1 + b, ] 1,21 > 1. The slopes for both u and s fulfill the 

relation of being )kl)t 2 just the eigenvalue (3.7) of the 2-cycle. Considering 
again the unstable manifolds, the straight line going through F I is now 
expected to be defined for negative values of z (remember x2 (2) < 0), while 
the other one for positive values. The maximum of ~(z ) ,  

c~ 2) = x~ 2) - )t~'x(2 2~ (4.8) 

restricts the range of validity of ff2 into 0 < z < c~ 2). This means that the 
last point of the branch is Pl,i : ( 1 -  acI2),cl2)), the first image of the 
maximum point P~,0: (c} 2), 0). The inverse of if2, at the same time, confines 

into the region 1 - ac~ 2) ~< z < 0, i.e., between the points P],2 and Pl,0 
(Fig. lb). As long as P~,2 lies below the z axis, the starting point of the 
branch going through F 2 is P2,0:(c (2),0), its intersection point with the x 
axis. Similarly as in the case of the fixed points, the inverse functions are 
defined in a longer interval as the original functions themselves; thus (2.6) 
generates further branches (Fig. lb). The stable manifolds are again to be 
constructed by means of (2.7). 

Among the invariant curves of other periodic points we shall investi- 
gate those of the 4-cycle given by (3.10). Substituting (4.1) into (2.6) we 
obtain the following expressions for the slopes: 

)k~4' = -  ~ (l -~A)' )t(24'- a2"[-2b (1 "t- ~ ) 2 a  
(4.9) 

a ( l + l ) ,  )t(44)= a22?b (l+ A ) = 

with 

a + 2b )i/2 
- -  ( 4 . 1 0 )  A = a2 2b 

Taking .[--[4 ~,(4) it turns out to be the eigenvalue )t~ ) specified by (3.12); l l i =  ll~'i , 
thus the above choice corresponds to the unstable manifolds. The slopes of 
the stable ones are obtained by replacing A by ( - A ) .  Further steps proceed 
along the same lines as in the case of period-2 points. 

The construction sketched above converges: after a few steps, i.e., after 
a few subsequent extensions of (4.1), the new lines will lie so close to the 
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original one that they cannot be distinguished any more. In the case of the 
unstable manifolds, having a picture the size of Fig. 2, for example, one 
may stop after five steps of construction as further steps hardly modify the 
picture. 

Figure 2a-c shows invariant manifolds at the standard value of param- 
eters (8) a - -1 .7 ,  b = 0.5 where the existence of a strange attractor is 
proven.(l~) In particular, the separatrices of the hyperbolic fixed point H+ 
as well as those of the period-2 and period-4 points are presented. Each 
picture shows homoclinic points between the stable and unstable manifolds 
associated with the same hyperbolic point. It is instructive to see that the 
unstable separatrices of the periodic points run indeed among the branches 
of W~_, the unstable separatrix of H+,  similarly as in the H6non model. (~5) 
Branches of the unstable manifolds of the periodic points come, already 
after a few steps of construction, so close to those of W u that they are + 

scarcely to be distinquished. In fact, we had to stop after 2 (1) extensions 
when constructing the unstable manifolds of period-2 (4) points in order to 
get different pictures from Fig. 2a. 

Not only these unstable separatrices are parallel to W" The unstable + .  

manifolds of each periodic points, e.g., those of the 6-cycle given by 
(3.13)-(3.15), are expected to run in the inside of W~_ (the unstable 
manifold of H_ is winding also among the branches of W~ (12)). This is 
why the closure of W+ is to be considered as the strange attractor. (15) A 
comparison with the computer picture of Fig. 2d supports this view. 

The stable manifold W s_ of the other fixed point--not  shown on Fig. 2 
(see Ref. 12)--plays an important role, too. It surrounds W+, as well as the 
separatrices of the periodic points, defining the border of the attracting 
region of the strange attractor. (~5) 

5. MODIFICATIONS OF THE STRANGE ATTRACTOR 

By varying the parameters of the map, the structure of the invariant 
manifolds changes and, consequently, the strange attractor is changed as 
well. We shall fix b, the measure of the dissipation, and consider a as a 
control parameter. 

Studies of the Hdnon model suggest (15) that there are two different 
mechanisms leading to the destruction of a (one-piece) strange attractor. 
One is related to the appearance of heteroclinic points and the other one to 
the disappearance of homoclinic ones. 

Increasing a, the end points of the unstable separatrix W~ come closer 
and closer to the stable separatrix W5 of the fixed point H_.  At a critical 
value a c tangent points appear (if there is one, necessarily an infinite 
number of them should exist) and above this point the branches of W~_ 
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Fig. 3. 

j J  

2+ b z ~ H + ~  WS 
fh\ ---+ 

w_U/ 3 

/I 2 - - + 2 z  
2§ 

~ 
" - 2 ~  ~ 

4-6b+b2- 8--~--~Sb*b2 z 
(2-b) 2 2(2-b) 

Critical situation characterized by heteroclinic tangents between W u and W L  at + 
a c = 2 - b / 2 .  

cross W ~_ . Trajectories after crossing the curve of W ~_ go to infinity, i.e., 
the unstable manifold (more precisely its closure) is no more a finite 
attractor. In the immediate vicinity of a C, of course, typical sequences 
spend quite a long time inside W ~_ before escaping. 

The value of a C can be most easily specified by considering the 
maximum point P0 of W~ and requiring it lies on the branch (4.6) of W ;  
(Fig. 3). This gives 

-d*_ = c* (1/X ~_ + 2 a o / b  ) (5.1) 

where e% and d* have been defined by (4.2) and (4.4). Using the identities 

- d * _ = ( b + X ~ _ )  - ' ,  c * = ( l + ~ , ~ _ )  ' (5.2) 

one obtains 

a~ = 2 - b / 2  (5.3) 

(see also Refs. 11 and 12) involving 

) t ;  = ~-2, )t~ = + b / 2  (5.4) 

The images of the point P0, i.e., PI,P2 . . . .  turn out to touch the branch 
(4.5) of W s_ (Fig. 3). On the other hand, the preimages of P0, i.e., the points 
T- ' (P0) ,  where T -n denotes the nth iterate of the inverted map, are also 
heteroclinic tangents. Above a~ the points Pi for i --~ co go to infinity along 
W~_, i.e., the unstable manifold of H+ does not remain bounded. 
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By lowering a, the points P3, P4 . . . .  go into the inside of the triangle 
PoP~P 2 and at another critical value acl a situation is reached where all Pi 
touch the stable manifold W+ of H+.  When calculating act we use the fact 
that P1:(1 - a c* , c*  ) in this case lies on the branch (4.6) of W+, i.e., 

c*  = (1 - a c *  - 2 a c e / b )  (5.5) 

After substituting (4.2), (4.4), (3.3), it follows that 

a c l = ~  4 + 3 b  2+  ] (5.6) 

this result has already been obtained in Ref. 11. Let us consider now at1 as 
a function of b. In the one-dimensional (b = 0) case a d = ~- ;  the curve 
ac~(b ) is slowly increasing and crosses the stability border of the 2-cycle 

a ( 2 ) = l + b a t b = 0 . 5 0 6  . . . .  
Figure 4 shows the configuration of W~_ and W~_ at acl (b = 0.3). The 

points P2, P3 . . . .  all touch the branch (4.5) of W+, while P0 belongs to 
another branch. The preimages of P0 are also homoclinic tangents. When 
comparing Fig. 4 to the corresponding picture of the H6non model (23) a 
striking topological similarity is found. 

Below the critical value homoclinic points cease to exist and the 
feedback mechanism produced by them disappears; thus W~_ cannot be 
related any more to a strange attractor. In all cases known until now acm is 
the same point where heteroclinic intersections among W s and the unsta- + 

ble manifolds of the period-2 points disappear, thus the closure of the latter 

P~ ~ J 

Fig. 4. Critical situation characterized by homoclinic tangents between W~_ and W~ 
(acl ~ 1.452, b = 0.3, after five steps). 
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object may become a (two-piece) strange attractor. We shall show, how- 
ever, that in decreasing the control parameter at greater values of b, the 
two events do not necessarily occur at the same time: heteroclinic intersec- 
tions may cease earlier, resulting in the appearance of a two-piece strange 
attractor already above at1 (see Section 6). If the splitting happens at at1, 
just below this value the strange attractor looks as if short pieces of W~ 
would be cut out from the neighborhood of H+.(13) 

By a further decrease of the control parameter, a subsequent critical 
value at2 may be reached characterizing a situation with homoclinic tan- 
gents now between the separatrices of the period-2 points. Considering one 
part of the attractor, the configuration of the invariant manifolds is similar 
to that found at a~, analogously as in the case of the H6non model. (23~ 
Since in the region of relatively small values of the control parameter the 
maximum point Pl,0:(c~ 2), 0) of the first branch of the unstable manifold 
emanating from F 1 (Fig. 1) has a second image, P~,2, lying in the second 
quadrant, the end point of the second branch of the same separatrix is the 
fourth image, PI,4 .(13) At a~2 this point should touch the closest branch of 
the stable separatrix of F1; thus we obtain 

4 (2) = X} 2) )tf(Tz4(C}2), 0) (5.7) Tx(Cl ,0) + - x l  2)) 

where T 4 denotes the fourth iterate of the map and other symbols have 
been defined in Section 4. Calculating at2 at different values of b, it turns 
out that in the one-dimensional limit a t 2 -  4~-, while for b close to 1 ac2 
approaches the stability border of the 2-cycle, the deviation being propor- 
tional to (1 - b) 2. In the intermediate region a numerical solution shows 
that the curve a~2(b ) tends to the line a (2) -- 1 + b quite rapidly and crosses 
the critical curve a~l at b = 0 .458 . . .  (this is why at ac~(b = 0.5)= 
1 .504 . . .  a 4-piece strange attractor can be observed), and that of ac at 
b = 0 .659 . . .  (Fig. 8). 

Below at2 the unstable manifolds of the period-4 points have no 
heteroclinic intersections with the stable manifolds of the period-2 points; 
thus the former objects are the most plausible candidates for representing a 
O-piece) strange attractor. Figure 5 shows the unstable manifolds of the 
period-4 points constructed below ac2, which agree well with the strange 
attractor obtained in a numerical simulation at the same value of the 
control parameter. 

We have determined the next critical value ac3 , too, corresponding to 
the appearance of homoclinic tangents between the separatrices of the 
period-4 points. Magnifying, for example, the uppermost part, a similar 
situation is found as on Fig. 4. The first branch of the unstable manifold of 
G 1 is characterized by the slope X} 4) given in (4.9). The end point of the 
next branch is the eighth image of the maximum point (c}4),0) where 
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/ 5  G1 

�9 F 1 

.H§  

.F2 

"%,G 2 

Fig. 5. U n s t a b l e  man i fo lds  of the per iod-4 points  G I ~ . . . ,  G 4 as ob t a ined  af ter  five steps of 

cons t ruc t ion  a t  p a r a m e t e r  values  a = 1.52, b = 0.5 (at2 ~ 1.528). 

C} 4) = X} 4) - -  ~(4)X(4)1 4 and the coordinates of the 4-cycle have been given by 
(3.10). At a~3 the e n d p o i n t  lies just on the stable manifold of G 1, i.e., the 
equation 

TxS(C}4), 0) = x~ 4) - ac3(1 - A)(TzS(c~4), 0) - x4(4))/2 (5.8) 

is to be fulfilled, where A is defined by (4.10). The curve ac3(b ) starts at 
8~-. According to the numerical solution it increases slowly and, in 
contrast to a~2(b ), crosses the line a (2) = 1 + b (Fig. 8). The point of 
intersection is at b = 0.133 . . . .  Just below at3 an eight-piece strange 
attractor is expected. 

In the one-dimensional limit the strange attractor goes through an 
infinite sequence of doubling bifurcations. It is easy to show that the 
splitting from 2 k-I to 2 k chaotic bands occurs at ack = 22-k. The results 
above suggest, however, a breakdown in the sequence of doubling bifurca- 
tions after a finite number of steps when decreasing a at finite values of b. 

6. STRUCTURAL INSTABILITY OF THE UNSTABLE 
MANIFOLDS OF THE PERIOD-2 POINTS; 
THE PHASE DIAGRAM OF THE MAP 

T h e  picture emerging from the previous sections is not yet complete. 
The fact the curve of at2 crosses that of at1 poses the question of what type 
of attractor appears just above a~2 for relatively great values of b. Numeri- 
cal simulations show that in a small band above a~2 a two-piece strange 
attractor exists in the whole region of interest. By increasing a at a fixed b 
this strange attractor abruptly turns into a one-piece one, as long as 
a < 2 - b / 2 ,  otherwise a region without finite attractors is reached. 
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In order to explain the phenomenon, let us consider the invariant 
manifold of the fixed point H+ and those of the period-2 points at the 
critical value ac1 for b = 0.4. The result of the construction is shown on Fig. 
6a. Homoclinic tangents characterize the configuration of the separatrices 
of H + ,  but, quite surprisingly, the unstable manifolds of the period-2 
points do not follow entirely the branches of W+ and have no heteroclinic 

X 

' F2~ ,~  

; 

X 

,//\,, 
/ 

. . . . .  4 . . . .  ~ -  ..... ~ . . . . . .  z 

i 

Fig .  6. (a)  S e p a r a t r i c e s  W~_ (dashed), W~_ (solid) emanated from H+, and the unstable 
manifolds of the period-2 points (thick) a t  at1 ~ 1.476, b = 0.4 (after five steps); (b) the strange 
attractor at the same values obtained in  a numerical simulation after 3000 points. 
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intersections with W~.. On the other hand, the unstable separatrices of 
period-4 points run indeed between the branches of those of period-2 
points. Assuming that this happens with the unstable manifolds of other 
periodic points, too, we conclude that in this case the closure of the 
unstable manifolds of the period-2 points gives already the strange attrac- 
tor. This is supported by the numerical results (Fig. 6b). The heteroclinic 
intersections with the stable manifolds of the period-2 points destroy the 
attracting character of W u + �9 

The typical features of this example are the following. At certain 
values of the parameters it may happen that the branches of the stable 
manifold W+ do not come close to the period-2 points. On the other hand, 
the unstable manifolds of the period-2 points have two structurally differ- 
ent forms: a less compact one, which is qualitatively similar to that of W+,  
and a more compact one which only partially follows the branches of W u + .  

If the more compact form fits into the region left intact by W+, i.e., no 
heteroclinic points are present, the closed set of the unstable manifolds of 
the period-2 points can be a strange attractor in spite of the fact that 
homoclinic points between W s and W u still exist. + + 

To find a condition for the structural instability of the unstable 
manifolds of period-2 points occurring at some value a~, let us consider the 
cases of a = 1.55 and a = 1.56 at b = 0.5 (Fig. 7a, b). While in the first case 
the shape of the manifolds does not change considerably after the first six 
steps, branches become effectively elongated by further and further steps in 
the second case and the final form will have several intersection points with 
the stable manifold W+. At an intermediate value of a we arrive at a 
situation where PI,3 and el,9, P1,4, and Pl,10 . . . .  are close to each other. 
More precisely, the end points of the branches come close to the points of a 
6-cycle; they are suspected to touch the stable manifolds of this 6-cycle in 
the critical case. The situation is quite similar to the structural instability of 
W+ at a c. 

In specifying a~l there is a difficulty since PI,o : (c~ 2), 0) is not the exact 
maximum point of the unstable manifold; in fact the branch ending at PI,9 
generates a point above P~,o, etc. For values of b, not immediately close to 
1, however, the difference is small and we obtain an approximate value for 
acl by requiring Pl,4 to be in the same height as the 6-cycle point given by 
(3.13), (3.15), i.e., 

T4(c~ 2), 0) = x~ 6) (6.1) 

The curve a~l(b ) obtained in this way starts from ((1 + ~ - ) / 2 ) 1 / 2 =  
1 . 2 7 2 . . .  at b = 0 and crosses the line acl(b ) at b = 0.382 . . . .  For b = 
0.5 Eq. (6.1) gives a~l = 1.556 . . . .  while the result of the computer simula- 
tion is a~l = 1.555 . . . .  For greater values of b the accuracy is decreasing 
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• 

Fig. 7. Unstable manifolds of the period-2 points as obtained after six steps of construction. 
b = 0.5 (a) a = 1.55, (b) a = 1.56. Crosses denote period-6 points. A few branches of W~. are 
shown, too. 

but the approximate curve (Fig. 8) properly expresses the tendency that a~l 
approaches at2 as b goes to 1. 

Now we can locate the region of the most important attractors on the 
phase diagram. As the numerical simulations show typically only one 
attractor for a given parameter value, we can summarize the results as 
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Fig. 8. Phase diagram of the piecewise linear map. Regions I, II, and IV belong to 1-, 2- and 
4-piece strange attractors, respectively. The dashed-dotted line (t7 (2) = 2~fb) separates regions 
N and Sp where the 2-cycle points are stable nodes and spirals, respectively. 

follows. Below a c = 2 -  b / 2  and above the maximum of acl and a~l a 
one-piece strange attractor exists (Fig. 8). Below the maximum of a H and 
a~ a two-piece strange attractor appears with qualitatively different shapes 
near a H and a~' I. The lower borderline of this region is acE. We cannot 
exclude the possibility that a similar structural instability, as discussed 
above, occurs in the unstable manifolds of other periodic points, too, but 
according to our numerical investigations the deviation from the critical 
lines calculated in Section 5 must be small. Thus, the region for the 4-piece 
strange attractor is expected to lie below a~2 and above the maximum of the 
curves a~3 and a (2). Below the straight iine a (2) = 1 + b no strange attractor 
exists. The 2-cycle points are stable nodes in region N and stable spirals in 
region Sp (Fig. 8). 

Finally, we note that in contrast to the case of the Hrnon  model we 
have not found an alternation of periodic and strange attractors when 
varying the control parameter.  This can be traced back to the fact that in 
the one-dimensional map Xn+ 1 = 1 - a[xn[ periodic windows do not appear, 
the Lyapunov number,  In a, is positive for all a > 1. 

7. THE CONSERVATIVE CASE 

A typical computer picture obtained in the limit b = 1 is shown on 
Fig. 9. The dots belong to chaotic sequences of unbounded trajectories, 
while the closed curves are associated with the 2-cycle (points jump 
between two tori of the same size). This can be understood by observing on 
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the one hand that. as b ~ 1 both manifolds of the fixed points become 
unbounded and leave out two holes around the period-2 points, and on the 
other hand that the 2-cycle points become elliptic for b = 1 as follows from 
(3.7). 

The method of construction of stable and unstable manifolds remains 
valid in the conservative limit, too, although the convergence of the 
construction is slower than in the dissipative case. Figure 10a shows W u + 

obtained after ten steps of construction at the same value of the control 
parameter  as on Fig. 9, while Fig. 10b shows the corresponding stable 
manifold W~_ obtained after six steps. When the two pictures are laid on 
top of one another, a great number  of homoclinic points emerge. Topo- 
logically similar pictures have been found in the conservative H6non 
model, (27-29) too. Note, that the manifold W ~_ can be obtained from W ~ -4- 

by the simple transformation (2.9), and W "  similarly from W~_. 
The form of the invariant curves of the period-2 points follows also 

from Eq. (2.6). The curves should belong to a family with the property that 
adding f (z)  to the inverse of a curve around Fl:(1/a,- 1/a) one obtains 
the curve around F 2 : ( -  l/a, 1/a), and vice versa. As long as only one of 
the straight lines of f(z) is needed in this procedure, the closed curves can 

Fig. 9. Computer picture of the piecewise linear map in the conservative limit. Dots belong 
to unbounded chaotic trajectories. The tori are invariant curves of the period-2 points (a = 1.4, 
b=l) .  
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Fig. 10. (a) The unstable separatrix W~_ as obtained after ten steps of construction; (b) the 
stable separatrix W~_ as obtained after six steps of construction (a = 1.4, b = I). 
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Fig. 11. Compute r  picture of the critical situation at a C = 1.5. The small tori are invariant 
curves of period-8, -10, -12, -14 points. 
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Fig. 12. Compute r  picture of the H~non model  in the conservative limit b = 1. Dots  belong 
to unbounded  trajectories. The tori are invariant curves of the period-2 points (a = 0.4). 
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be ellipses. They fulfill the symmetry relation (2.10) only if the main axes 
are parallel to the diagonals. Thus their equation reads 

( )-  xT- 2 ~ - 1  1 1 2 2a,2 
~ + 1  - a  - a  x + l  

with 

= a ' 2 / b  '2 (7.2) 

where a' and b' denote the two semiaxes of the ellipses. The upper sign in 
(7.1) belongs to a curve located around F1, and the lower sign to that 
around F 2. The condition expressed by (2.6) specifies the value of x as 

2 + a  (7.3) 
x - 2 - a  

The outermost ellipse touching the x and z axes is characterized by 

' =(2+----qa) 1/2 (7.4) 
arnax 2a 2 

Consequently, within the region bounded by the outermost ellipse the 
motion is regular, the invariant tori are concentric ellipses given by the 
form of (7.1) and (7.3). The numerical simulations suggest that the region of 
chaotic sequences comes close to the outermost ellipse. [In the limit a ~ 2 
the ellipses are deformed into two pieces of straight lines joining the points 
(0, - 1),(1,0), and (0 ,0) , ( -  1, 1).] 

Finally, two remarks are in order. 
As Fig. 10a shows, at a = 1.4 the points P3, P4 lie below the line P z P I  . 

Increasing the control parameter, however, the positions can change. There 
is a critical configuration at a c = 1.5 [note that this is just the limiting value 
of (5.3)] where P3, P 4  �9 �9 �9 touch the line P 2 P v  Then, W~ and W ~_ coincide 
and form a triangle with corner points (2, 0), ( 0 , -  2), ( - 2 ,  2). It is now a 
closed invariant curve of the map. Thus, chaotic trajectories starting from 
the inside of the triangle are confined into this region (Fig. 11), which gives 
a special importance to this case. 

Based on the similarities between the topological structure of the 
invariant curves of the piecewise linear map and that of the H6non model, 
one may ask whether it is possible to find the analogous picture of Fig. 9 in 
the conservative limit of the H~non model, b = 1 in (2.1),(2.4) (note that 
the canonical form of H6non's conservative map corresponds to the choice 
b = - 1 in our representation (1)). The answer is affirmative. Figure 12 is the 
result of the computer simulation at a = 0.4. The invariant curves should 
have the property that adding a parabola to the inverse of one of them 
gives just the other one. The borderline of the dotted region of chaotic 
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sequences is expected  to be  given by  the first b ranches  of the uns tab le  
man i fo ld  of the f ixed po in t  H +  lying in the first quadran t .  The  conf igura-  
t ion is s imilar  to that  found  for a > a c = 1.5 in the piecewise l inear  map .  
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